STAR Experiment

Nu Xu

- Introduction: Structure of the QCD Matter
- Near future physics programs

QCD in Twenty-One Century

STAR Experiment at RHIC

(http://www.star.bnl.gov/)

Fundamental science: particle physics, nuclear physics, astrophysics, cosmology, ...

State of art technology: detector R&D, computing, mass/fast data managing, ...

- 550 scientists
- 54 institutes
- 12 countries
- ~ 140 PhD thesis completed since 2001

STAR Physics Focus

Polarized *p*+*p* program

- Study *proton intrinsic properties*

Cold Nuclear Matter

- Study low-x properties, initial condition, search for *CGC*
- Study parton distribution function of nucleon/nucleei

2020 eRHIC (eSTAR)

1) At 200 GeV at RHIC

- Study *medium properties, EoS*
- pQCD in hot and dense medium

2) RHIC beam energy scan (BES)

- Search for the **QCD** critical point
- Chiral symmetry restoration

STAR Detectors Fast and Full azimuthal particle identification

Study QCD Phase Structure

STAR

Summary

- RHIC: Dedicated facility for studying matter with QCD degrees of freedom:
 - Properties of QGP
 - Sea quark and gluon contributions to proton helicity structure
 - QCD critical point, phase boundary
- 2) Future: EIC (eRHIC, 2022 ...)
 - Partonic structures of nucleon and nuclei
 - Dynamical evolution from cold nuclear matter to hot QGP

Phase Structures of QCD Matter